Abstract
Abstract Polypropylene (PP)/sisal fibre (SF)/carbon fibre (CF) hybrid composites were prepared by melt blending process at a variable weight percentage (wt%) of carbon: sisal fibre loading (20:10, 15:15, 10:20, and 5:25). MA-g-PP (MgP) as a compatibiliser was used to improve the dispersion of the fibres within the PP matrix. The composites were subjected to mechanical tests to optimize the fibre content of CF: SF. Incorporation of 20 wt% of CF and 10 wt% of SF with 5 wt% MgP resulted in higher mechanical performance of about 67.02 and 112% over that of PP/SF composite. Similarly, the impact strength was found to be optimum which enhanced to the tune of 39.62% as compared with PP/SF composites. Halpin Tsai model was used to compare the theoretical tensile modulus of PP/SF/MgP composites and PP/SF/CF/MgP hybrid composites with experimental evaluated values. Fracture toughness parameters such as K IC (critical stress intensity factor) and G IC (critical strain energy release rate) are determined for PP/SF/MgP composites and PP/SF/CF/MgP hybrid composites and compared by using single edge notch test. DSC study showed higher melting temperature (T m ) of PP/SF/CF/MgP composites as compared to PP revealing the enhancement in thermal stability. TGA/DTG study revealed the synergistic effect of the hybrid composite thus confirming the hybridisation effect of the system. DMA study showed that the hybridisation of CF and SF within the matrix polymer contributes to an increase in the storage modulus (Eʹ). Morphological observation by SEM confirmed that the carbon fibres and sisal fibres are well uniformly dispersed within the PP matrix, in the presence of MgP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.