Abstract

Whole-genome duplication, leading to polyploidy and endopolyploidy, is widespread throughout the tree of life.1-3 Both polyploidy and endopolyploidy can increase cell size via nucleotypic effects, but the phenotypic consequences of increased cell size at the tissue and whole-organism levels are less well understood.1-4 We quantified the consequences of autopolyploidy and endopolyploidy in nine diploid accessions of Arabidopsis thaliana, representing a gradient in endopolyploidy, to their corresponding experimentally synthesized neo-tetraploid and neo-octoploid cytotypes. The increase in cell size following genome duplication increased plant storage capacity, which increased tolerance of resource limitation, but also incurred biomechanical costs because of a reduction in the amount of cell wall per unit tissue volume. Our findings also show that the functional consequences of autopolyploidy can vary with accession identity, and the presence of this variation suggests that there is potential for adaptation following whole-genome duplication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.