Abstract

Highly purified beef adrenal cytochrome P-450 specific for cholesterol side chain cleavage (P-450-scc) has been reconstituted with sonicated vesicles containing cholesterol and either dimyristoyl phosphatidylcholine (DMPC) or dioleoyl phosphatidylcholine (DOPC). When cholesterol was present in DMPC vesicles at 1:15 molar ratio, cardiolipin and L-alpha-phosphatidylinositol 4-monophosphate (DPI) increased side chain cleavage by at least 5-fold (0.7 min-1-3.5 min-1). In DOPC vesicles, a smaller increase was observed (2.8 min-1-5.0 min-1). Activator phospholipids increased the rate of transference of cholesterol both to and from the cytochrome when, respectively, cholesterol-free P-450scc and cholesterol-P-450scc complex are combined with either DMPC or DOPC vesicles. Transfer of cholesterol to and from cytochrome P-450 occurred with similar first order rate constants and was also independent of the concentrations of cholesterol vesicles and P-450. It is suggested that transfer in both directions is limited by the rate of insertion of P-450scc into the membrane. Phospholipid stimulatory effects for both cholesterol transfer and for activation of side chain cleavage occurred with the same ranking, even though cholesterol transfer, following reconstitution, was 5-10 times slower than the turnover of side chain cleavage. DPI increased Vmax for side chain cleavage in both DMPC and DOPC vesicles to the same rate (12 min-1) without effect on the Km for cholesterol, while cardiolipin both produced a similar increase in Vmax and decreased Km (cholesterol). This activation by DPI is attributed to more favorable incorporation of P-450scc in these membranes and is consistent with previously reported effects of acidic phospholipids on other mitochondrial proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.