Abstract

Wound dressings with excellent adhesiveness, antibacterial, self-healing, hemostasis properties, and therapeutic effects have great significance for the treatment of acute trauma. So far, numerous mussel-inspired catechol-based wet adhesives have been reported, opening a pathway for the treatment of acute trauma. However, catechol-based hydrogels are easily oxidized, which limits their applications. Here, the design of a polyphosphazene and non-catechol based antibacterial injectable hydrogel is reported as a multifunctional first aid bandage. Inspired by barnacle cement proteins, a series of dynamic phenylborate ester based adhesive hydrogels are prepared by combining the cation-π structure modified polyphosphazene with polyvinyl alcohol. The inherent antibacterial property (4 h antibacterial rate 99.6 ± 0.2%), anti-mechanical damage, and hemostatic behavior are investigated to confirm multi-functions of wound dressings. In water, the hydrogels firmly adhere to tissue surfaces through cation-π and π-π interactions as well as hydrogen bonding (adhesion strength = 45 kPa). Moreover, in vivo experiments indicate the hydrogels can shorten the bleeding time and reduce the amount of bleeding by 88%, and significantly accelerate the wound healing rate. These hydrogels have a promising application in the treatment of acute trauma, which is in urgent need of anti-infection and hemostasis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call