Abstract

The mechanism of synthesis of inorganic polyphosphate by polyphosphate kinase (EC 2.7.4.1) from Propionibacterium shermanii is shown to be processive. Analysis of the synthesized polyphosphate on polyacrylamide gels, which resolve on the basis of molecular weight, proves that the elongation reaction occurs without dissociation of intermediate sizes of the polymer from the enzyme. As a consequence, only high molecular weight polyphosphates are synthesized. The mechanism is processive both in the presence and absence of basic protein. It has been shown previously that basic proteins stimulate the synthesis of polyphosphate (Robinson, N.A., Goss, N.H., and Wood, H.G. (1984) Biochem. Int. 8, 757-769). In addition, using a similar method, it is shown that the reverse reaction, the utilization of polyphosphate to phosphorylate ADP, occurs by a processive mechanism. Accordingly, polyphosphates formed by polyphosphate kinase in the cell would be entirely high molecular weight.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.