Abstract
Self‐healing cyanate ester resins (CE) were developed by adding low molecular weight poly(phenylene oxide) (PPO) resin, yielding a high performance CE/PPO system via a low‐temperature process. The addition of PPO improved the flexural strength and fracture toughness of the CE matrix without sacrificing thermal properties. CE/PPO formulations with 5, 10, and 15 wt.% PPO showed 43%, 65%, and 105% increase in fracture toughness due to a combination of crack deflection, crack pinning, and matrix cavitation around second‐phase particles. When PPO was introduced into the CE, dielectric properties were either unchanged or declined. During thermal treatment to heal damaged CE, liquid PPO flowed into cracks, and during subsequent cooling, solidified to bond the crack surfaces. The self‐healing efficiency for CE with 15 wt.% PPO after heating to 220°C for 1 h exhibited a recovery of 73% in toughness and 81% in microtensile strength. Copyright © 2014 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.