Abstract
Coronary artery disease (CAD) is a disease progressing over many years. Genetic factors, as well as the exposure to risk factors, are continuously leading to endothelial dysfunction, vascular alterations and, eventually, organ damage, major cardiovascular events and deaths. Oxidative stress, platelet hyperactivity and low-grade inflammation are important modulators in this context, contributing to plaque formation. Since platelet activation plays a critical role in the development and progression of atherothrombotic events, the inhibition of platelet hyperactivity may contribute to decreased atherothrombotic risk. The consumption of bioactive foods, and plant-derived polyphenols in particular, might impart anti-thrombotic and cardiovascular protective effects. Aim of this work is to focus on the potential of dietary derived polyphenols to reduce platelet hyperactivity or hypercoagulability in addition to discussing their possible complementary anti-platelet therapeutic potential. All the relevant publications on this topic were systematically reviewed. Various studies demonstrated that polyphenol supplementation affects platelet aggregation and function in vitro and in vivo, mainly neutralizing free radicals, inhibiting platelet activation and related signal transduction pathways, blocking thromboxane A2 receptors and enhancing nitric oxide production. Experimental data concerning the effect of dietary polyphenols on platelet aggregation in vivo are poor, and results are often conflicting. Only flavanols clearly mirrored in vivo showed the efficacy in vitro in modulating platelet function. Dietary polyphenols, and above all flavanols contained in cocoa and berries, reduce platelet activation and aggregation via multiple pathways. However, more controlled interventional studies are required to establish which doses are required as well as what circulating concentrations are sufficient to induce functional antiplatelet effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.