Abstract

Polyphenolic compounds produced by plants can chelate iron, reducing its bioavailability to plant-associated bacteria. In response to limited iron levels, most bacteria produce siderophores to acquire needed iron quantities. The amount of phenolic compounds detected in methanolic washings of leaves of different plant species varied greatly, being nearly sevenfold higher in Viburnum tinus than in Phaseolus vulgaris. In species with high levels of total phenolics (e.g. Pelargonium hortorum), tannin concentration of leaf washings was also high and accounted for up to 85% of total phenolics. Both stimulation of production of the siderophore pyoverdine in Pseudomonas syringae strain B728a and inhibition of growth of an isogenic mutant I-1, deficient in pyoverdine production were associated with plants harbouring high levels of leaf surface phenolics. Levels of tannic acid sufficient to inhibit growth of the pyoverdine mutant in culture in an iron-reversible fashion were similar to tannin levels found on leaves of plants such as P. hortorum. Additionally, the amount of pyoverdines produced by P. syringae and quantified in leaf washings from a variety of plants was directly related to the concentration of tannins released from the leaf, indicating that tannins were responsible for sequestering iron. Phenolic compounds, principally tannins, may thus play an important role in plant–microbe interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.