Abstract

Cardiovascular disease (CVD) is associated with alterations in DNA methylation and polyunsaturated fatty acid (PUFA) profile, both modulated by dietary polyphenols. The present parallel, placebo-controlled study (part of the original clinical study registered as NCT02800967 at www.clinicaltrials.gov) aimed to determine the impact of 4-week daily consumption of polyphenol-rich Aronia melanocarpa juice (AMJ) treatment on Long Interspersed Nucleotide Element-1 (LINE-1) methylation in peripheral blood leukocytes and on plasma PUFAs, in subjects (n = 54, age range of 40.2 ± 6.7 years) at moderate CVD risk, including an increased body mass index, central obesity, high normal blood pressure, and/or dyslipidemia. The goal was also to examine whether factors known to affect DNA methylation (folate intake levels, MTHFR C677T gene variant, anthropometric and metabolic parameters) modulated the LINE-1 methylation levels upon the consumption of polyphenol-rich aronia juice. Experimental analysis of LINE-1 methylation was done by MethyLight method. MTHFR C677T genotypes were determined by the polymerase chain reaction–restriction fragment length polymorphism method, and folate intake was assessed by processing the data from the food frequency questionnaire. PUFAs were measured by gas–liquid chromatography, and serum lipid profile was determined by using Roche Diagnostics kits. The statistical analyses were performed using Statistica software package. In the comparison after vs. before the treatment period, in dyslipidemic women (n = 22), we observed significant decreases in LINE-1 methylation levels (97.54 ± 1.50 vs. 98.39 ± 0.86%, respectively; P = 0.01) and arachidonic acid/eicosapentaenoic acid ratio [29.17 ± 15.21 vs. 38.42 (25.96–89.58), respectively; P = 0.02]. The change (after vs. before treatment) in LINE-1 methylation directly correlated with the presence of MTHFR 677T allele, average daily folate intake, and the change in serum low-density lipoprotein cholesterol but inversely correlated with the change in serum triacylglycerols (R = 0.72, R2 = 0.52, adjusted R2 = 0.36, P = 0.03). The current results imply potential cardioprotective effects of habitual polyphenol-rich aronia juice consumption achieved through the modifications of DNA methylation pattern and PUFAs in subjects at CVD risk, which should be further confirmed. Hence, the precision nutrition-driven modulations of both DNA methylation and PUFA profile may become targets for new approaches in the prevention of CVD.

Highlights

  • Pathogenesis of human chronic diseases, such as cancer and cardiovascular disease (CVD), is related to aberrant global and locus-specific DNA methylation patterns [1, 2]

  • The main finding of this study is that the 4-week daily consumption of A. melanocarpa juice decreased the Long Interspersed Nucleotide Element-1 (LINE-1) methylation levels in peripheral blood leukocytes in women with CVD risk factors, including overweight and dyslipidemia

  • Treatment with Aronia melanocarpa juice, assigned as AMJ treatment, contained 1.18 g of total polyphenols. This amount corresponds to an estimated average daily intake of about 1 g of total polyphenols from the dietary sources [31], provided that, in the composition of aronia polyphenols, the most abundant are anthocyanins, proanthocyanidins, hydroxycinnamic acids, and flavonols [32], which is in compliance with the findings of a previous study that characterized the composition of aronia juice used in the current research [24]

Read more

Summary

Introduction

Pathogenesis of human chronic diseases, such as cancer and cardiovascular disease (CVD), is related to aberrant global and locus-specific DNA methylation patterns [1, 2]. Methylation of DNA, catalyzed by DNA methyltransferases (DNMTs), is one of the main epigenetic processes, which most commonly occurs at cytosine-guanine (CpG) dinucleotide clusters and results in downregulation of gene expression [3]. Various exogenous and endogenous factors modulate DNA methylation. Folate (vitamin B9) is found in a variety of plant foods and participates in one-carbon metabolism, resulting in the formation of S-adenosyl-methionine (SAM) that acts as a methyl group donor [4]. Methylenetetrahydrofolate reductase (MTHFR) activation catalyzes the conversion of homocysteine to methionine, which is a direct precursor of SAM. The presence of T allele at a common C677T (Ala222Val) MTHFR gene polymorphic site is associated with a decreased activity of the enzyme, reducing the methyl group bioavailability and subsequently inhibiting the methylation of DNA [5]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call