Abstract

Polyphenol oxidase (PPO) may have multiple functions in tissues depending on its cellular or tissue localization. Here we use PPO RNAi transformants of red clover (Trifolium pratense) to determine the role PPO plays in normal development of plants, and especially in N2-fixing nodules. In red clover, PPO was not essential for either growth or nodule production, or for nodule function in plants grown under optimal, N-free conditions. However, absence of PPO resulted in a more reduced environment in all tissues, as measured by redox potential, and caused subtle developmental changes in nodules. Leaves and, to a lesser extent nodules, lacking PPO tended to accumulate phenolic compounds. A comparison of nodules of two representative contrasting clones by microscopy revealed that nodules lacking PPO were morphologically and anatomically subtly altered, and that phenolics accumulated in different cells and tissues. Developing nodules lacking PPO were longer, and there were more cell layers within the squashed cell layer (SCL), but the walls of these cells were less thickened and the cells were less squashed. Within the N2-fixing zone, bacteroids appeared more granular and were less tightly packed together, and were similar to developmentally compromised bacteroids elicited by catalase mutant rhizobia reported elsewhere.

Highlights

  • Polyphenol oxidases (PPOs) are ubiquitous copper-containing enzymes with antioxidant activity

  • RNAi PPO TRANSFORMED RED CLOVER POPULATION A total of 12 separate clonal lines taken from plants (RC1–RC14) of segregating RNAi PPO transformed red clover population survived: one WT and one RNAi transformant died

  • PPO activity in roots and nodules reflected the pattern observed in leaves: the same three WT plants had significantly higher PPO activity in both roots (p < 0.001) and nodules (p < 0.001); PPO activity in RNAi transformants was reduced 43-fold in roots and sixfold in nodules

Read more

Summary

Introduction

Polyphenol oxidases (PPOs) are ubiquitous copper-containing enzymes with antioxidant activity. They catalyze oxidation of diphenols to quinones and cause oxidative browning of plant tissues when subjected to biotic and abiotic stresses (Yoruk and Marshall, 2003; Mayer, 2006). The term PPO refers to monophenolase (tyrosinase; EC 1.14.18.1) and o-diphenol oxidase (catechol oxidase; EC 1.10.3.1), which oxidize monophenols to o-diphenols and o-diphenols to o-quinones respectively. These highly reactive quinones polymerize, with themselves or with amino acids and proteins, to produce high molecular weight colored complexes (Walker and Ferrar, 1998). While PPOs catalyze oxidative activity they are generally viewed as part of a plant’s initial defense arsenal, rather than as another aspect of the redox systems deployed during normal plant development

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.