Abstract

Soy protein (SP) adhesives can resolve several problems with aldehyde-based adhesives, including formaldehyde release and excessive dependence on petroleum-based materials. Nevertheless, their development is hindered by the lack of balance between fluidity and high cold-pressing adhesive strength. A dynamically cross-linked SP adhesive with excellent fluidity and cold-pressing adhesion was developed in this study based on the polyphenol-metal ion redox-induced gelation system. SP was blended with acrylamide (AM), ammonium persulfate (APS), and the tannic acid (TA)-Fe3+ complex to prepare an adhesive gel precursor with good fluidity. In situ gelation of SP adhesive was then achieved via AM polymerization, as initiated by redox between TA and Fe3+. As expected, the prepared adhesive gel exhibited outstanding cold-pressing bonding strength (650 kPa) to the veneers compared to the neat SP adhesive, which has almost no cold-pressing bonding strength to the veneers. The TA-Fe3+ complex induced an in situ gelation system, which endowed the SP adhesive with strong cohesion; the topological entanglement of the adhesive gel in the veneers contributed to tight interfacial combinations. The TA-Fe3+ complex served not only as an accelerator of SP adhesive gelation but also as a "cross-linking core" for the cross-link SP adhesive system. The prepared SP-based adhesive also exhibited outstanding hot-pressing bonding strength and mildew resistance. The proposed polyphenol-metal ion-induced in situ gelation strategy may provide a new approach for developing advanced vegetable protein adhesives to replace aldehyde adhesives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call