Abstract

The study aimed to examine effects of (−)-epigallocatechin-3-gallate (EGCG) on energy metabolism and mitochondrial dynamics in mouse model of renal injury caused by doxorubicin (DOX). Here, mice were divided into Control group, EGCG-only treated group, DOX group, and three doses of EGCG plus DOX groups. Our results showed that EGCG behaved beneficial effects against kidney injury via attenuation of pathological changes in kidney tissue, which was confirmed by reducing serum creatinine (SCr), blood urea nitrogen (BUN), and apoptosis. Subsequently, changes in reactive oxygen species generation, malondialdehyde content, and activities of antioxidant enzymes were considerably ameliorated in EGCG + DOX groups when compared to DOX group. Furthermore, EGCG-evoked renal protection was associated with increases of mitochondrial membrane potential and decreases of mitochondrial fission protein Dynamin-related protein 1 (Drp1). Moreover, changing glycolysis into mitochondrial oxidative phosphorylation was observed, evidenced by controlling activities of malate dehydrogenase (MDH) and hexokinase (HK) in EGCG + DOX groups when compared to DOX group, indicating that reprogramming energy metabolism was linked to EGCG-induced renal protection in mice. Therefore, EGCG was demonstrated to have a protective effect against kidney injury by reducing oxidative damage, metabolic disorders, and mitochondrial dysfunction, suggesting that EGCG has potential as a feasible strategy to prevent kidney injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.