Abstract

Ethnopharmacological relevancePenthorum chinense Pursh (PCP) has acknowledged as an edible herbal medicinal plant for the prevention and treatment of alcoholic liver injury (ALI). However, only few of researches focus on the chemical material basis and potential mechanisms of PCP against ALI. Aim of the studyHerein, we explored the therapeutic effects of PCP extract against ALI based on the integration of network pharmacology, molecular docking, and experiment validation. MethodsBased on the standard quality control of PCP herbs by UPLC fingerprint and quantitative determination, 80% ethanol extract fraction of PCP containing more polyphenols, compared to aqueous extract fraction of PCP, were chosen for further experiments. After oral administration of PCP ethanol extract, serum pharmacochemistry based on UPLC-Q-Exactive-MS analysis was implemented to evaluate the potential effective compounds. These absorbed prototypes in PCP were used to construct network pharmacology and predict the potential mechanisms of PCP extract against ALI. Then, the predicted targets and biological mechanisms of PCP extract were validated using animal experiments and molecular docking analysis. ResultsAlthough totally 19 polyphenol compounds were identified in PCP ethanol extract by UPLC-MS analysis, only 18 absorbed prototypes were found in the serum collected from mice at 1 h post-administration with PCP extract. These candidate active compounds were further screened into 13 compounds to construct network pharmacology and 433 targets were identified as PCP targets. GO and KEGG pathway enrichment analyses indicated that the effects of PCP extract would involve in Ras signaling pathway. The animal experiments on chronic ALI model mice shown that the oral administration of PCP can alleviate ALI by attenuating hepatic oxidative stress, inflammation and down-regulating the target proteins in Ras/Raf/MEK/ERK pathway. Molecular docking analysis revealed the good binding ability between the three polyphenols (i.e. quercetin, apigenin, thonningianin B) in PCP with the top contribution in network pharmacology, and these target proteins (Ras, Raf, MEK1/2, and ERK1/2). ConclusionOur results clarified that PCP ethanol extract could effectively alleviate ALI by down-regulating Ras/Raf/MEK/ERK signaling pathway promisingly. Quercetin, apigenin, and thonningianin B may be the active compounds of PCP, attributing to the intervention benefits of PCP against ALI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call