Abstract
The challenges of multi-pathway immune resistance and systemic toxicity caused by the direct injection of immune checkpoint inhibitors are critical factors that compromise the effectiveness of clinical immune checkpoint blockade therapy. In this context, natural polyphenols have been employed as the primary component to construct a targeted and acid-responsive PD-L1 antibody (αPD-L1) delivery nanoplatform. This platform incorporates garcinol, an inhibitor of the Nuclear Factor Kappa-B (NF-κB) signaling pathway, to regulate pro-tumor immune escape cytokines and regulatory T cells. Additionally, the nanoplatform has been verified to induce immunogenic cell death (ICD), which promotes the maturation of dendritic cells and enhances the activity of cytotoxic T lymphocytes. In vivo and in vitro experimental results demonstrated that the nanoplatform can boost the immune response through a PD-L1 and NF-κB blocking/ICD inducing three-pronged strategy, thereby effectively combating tumor growth and metastasis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.