Abstract

Current treatments for diabetic wounds have some curative effect, but the process is complicated and lack user-friendly wound dressings. Nanozymes have gained significant attention for wound healing due to their striking merits. Herein, we have developed a novel sprayable tannin acid-cobalt coordination nanozyme (TACo) for diabetic wound healing. TACo nanozyme offers a convenient and efficient methods by spraying directly onto wounds surface, reducing infection risk by avoiding direct contact. Notably, its antioxidant properties contribute to scavenging the reactive oxygen species (ROS), alleviating oxidative stress and inflammation of wound microenvironment. Additionally, TACo nanozyme could promote cell survival and multiplication, which is crucial for the wound healing process. Importantly, TACo nanozyme facilitates angiogenesis by enhancing cell viability, migration, and tube formation. The unique coordination between metal and phenolic components confers pH-responsive cobalt ion and TA release properties, avoiding secondary damage during the wound cleaning. This unique composition seamlessly integrates photothermal antibacterial therapy, inflammatory microenvironment management, supporting for angiogenesis, and effective promotion of extracellular matrix production sequentially by harnessing the acidic pH environment of diabetic wounds. In conclusion, the development of a sprayable TACo nanozyme presents a promising therapeutic approach for the treatment of diabetic wounds, addressing the complexities of current treatments and providing a user-friendly application method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call