Abstract

The Lavanttal Fault Zone (LFZ) is generally considered to be related to Miocene orogen-parallel escape tectonics in the Eastern Alps. By applying thermochronological methods with retention temperatures ranging from ~450 to ~40°C we have investigated the thermochronological evolution of the LFZ and the adjacent Koralm Complex (Eastern Alps). 40Ar/39Ar dating on white mica and zircon fission track (ZFT) thermochronology were carried out on host rocks (HRs) and fault-related rocks (cataclasites and fault gouges) directly adjacent to the unfaulted protolith. These data are interpreted together with recently published apatite fission track (AFT) and apatite (U-Th)/He ages. Sample material was taken from three drill cores transecting the LFZ. Ar release spectra in cataclastic shear zones partly show strongly rejuvenated incremental ages, indicating lattice distortion during cataclastic shearing or hydrothermal alteration. Integrated plateau ages from fault rocks (~76 Ma) are in parts slightly younger than plateau ages from HRs (>80 Ma). Incremental ages from fault rock samples are in part highly reduced (~43 Ma). ZFT ages within fault gouges (~65 Ma) are slightly reduced compared to the ages from HRs, and fission tracks show reduced lengths. Combining these results with AFT and apatite (U-Th)/He ages from fault rocks of the same fault zone allows the recognition of distinct faulting events along the LFZ from Miocene to Pliocene times. Contemporaneous with this faulting, the Koralm Complex experienced accelerated cooling in Late Miocene times. Late-Cretaceous to Palaeogene movement on the LFZ cannot be clearly proven. 40Ar/39Ar muscovite and ZFT ages were probably partly thermally affected along the LFZ during Miocene times.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call