Abstract

Low-grade metamorphic rocks of Paleozoic–Mesozoic age to the north of Konya, consist of two different groups. The Silurian–Lower Permian Sizma Group is composed of reefal complex metacarbonates at the base, and flyschoid metaclastics at the top. Metaigneous rocks of various compositions occur as dykes, sills, and lava flows within this group. The ?Upper Permian–Mesozoic age Ardicli Group unconformably overlies the Sizma Group and is composed of, from bottom to top, coarse metaclastics, a metaclastic–metacarbonate alternation, a thick sequence of metacarbonate, and alternating units of metachert, metacarbonates and metaclastics. Although pre-Alpine overthrusts can be recognized in the Sizma Group, intense Alpine deformation has overprinted and obliterated earlier structures. Both the Sizma and Ardicli Groups were deformed, and metamorphosed during the Alpine orogeny. Within the study area evidence for four phases of deformation and folding is found. The first phase of deformation resulted in the major Ertugrul Syncline, overturned tight to isoclinal and minor folding, and penetrative axial planar cleavage developed during the Alpine crustal shortening at the peak of metamorphism. Depending on rock type, syntectonic crystallization, rotation, and flattening of grains and pressure solution were the main deformation mechanisms. During the F2-phase, continued crustal shortening produced coaxial Type-3 refolded folds, which can generally be observed in outcrop with associated crenulation cleavage (S2). Refolding of earlier folds by the noncoaxial F3-folding event generated Type-2 interference patterns and the major Meydan Synform which is the largest map-scale structure within the study area. Phase 3 structures also include crenulation cleavage (S3) and conjugate kink folds. Further shortening during phase 4 deformation also resulted in crenulation cleavage and conjugate kink folds. According to thin section observations, phases 2–4 crenulation cleavages are mainly the result of microfolding with pressure solution and mineral growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.