Abstract

Peptoids have attracted attention for application in biomedicine due to their advantageous properties as compared to peptides. The structural analogues are typically resistant to protease degradation and offer improved biocompatibility. Chemical routes to an impressive variety of short-chain, low-molecular-weight peptoids are well-established. However, synthetic methods for well-defined, high-molecular-weight polypeptoids with side chain diversity are still in their infancy. Here, we report a facile method for synthesis of polypeptoids via transition-metal-catalyzed controlled, living polymerization of N-substituted N-carboxyanhydrides. Our method is amenable to hydrophilic and hydrophobic side chains and yields high-molecular-weight linear polypeptoids of predictable length and low dispersity. Further, the polymer end groups can be tuned for biological targeting, and polypeptide-polypeptoid hybrids are readily prepared in one pot. Our materials are indeed resistant to common proteases and are well-tolerated by human cells. Overall, this work represents a significant stride toward access to tunable polypeptoids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call