Abstract

The MC dynamics of an off-lattice all-atom protein backbone model with rigid amide planes are studied. The only degrees of freedom are the dihedral angle pairs of the Cα-atoms. Conformational changes are generated by Monte Carlo (MC) moves. The MC moves considered are single rotations (simple moves, SM's) giving rise to global conformational changes or, alternatively, cooperative rotations in a window of amide planes (window moves, WM's) generating local conformational changes in the window. Outside the window the protein conformation is kept invariant by constraints. These constraints produce a bias in the distribution of dihedral angles. The WM's are corrected for this bias by suitable Jacobians. The energy function used is derived from the CHARMM force field. In a first application to polyalanine it is demonstrated that WM's sample the conformational space more efficiently than SM's.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.