Abstract

Image-guided photothermal therapy (PTT) is an attractive strategy to improve the diagnosis accuracy and treatment outcomes by monitoring the accumulation of photothermal agents in tumors in real-time and determining the best treatment window. Taking advantage of the superior imaging quality of NIR-II fluorescence imaging and remote-controllable phototherapy modality of PTT, we developed a facile macromolecular fluorophore (PF) by conjugating a small-molecule NIR-II fluorophore (Flav7) with an amphiphilic polypeptide. The PF can form uniform micelles in aqueous solution, which exhibit a slight negative charge. In vitro experimental results showed that the PF nanoparticles showed satisfactory photophysical properties, prominent photothermal conversion efficiency (42.3%), excellent photothermal stability, negligible cytotoxicity, and photothermal toxicity. Meanwhile, the PF can visualize and feature the tumors by NIR-II fluorescence imaging owing to prolonged blood circulation time and enhanced accumulation in tumors. Moreover, in vivo studies revealed that the PF nanoparticles achieved an excellent photothermal ablation effect on tumors with a low dose of NIR-II dye and light irradiation, and the process can be traced by NIR fluorescence imaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call