Abstract
We designed and synthesized the polyoxyethylene diamine (H2N-PEG-NH2) and poly(amide-imide)-polyethylene glycol (PAI-PEG) copolymers. The physical and chemical properties, mechanical properties, and in vitro biocompatibility of the materials were characterized. The results showed that the best elongation at break and recovery were obtained when the amount of PEG was 5 wt%. With the increase in PEG content, the degradation rate, hydrophilic property, tensile strength and tensile modulus of the copolymer decreased to a certain extent. The material had the best thermal stability and mechanical properties when 5 wt% PEG was added. Cytocompatibility evaluation showed that the addition of PEG could enhance the cell compatibility of the material and make it potentially suitable for application in bone repair.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.