Abstract

Novel hybrid polyoxometalates (POM) of α-H3PW12O40·nHMPA and α-H3PMo12O40·nHMPA composed of α-H3PW12O40 and H3PMo12O40 heteropoly acides (HPAs) and hexamethylphosphoramide (HMPA) organic substrate has been synthesized and purified. SBA-15 mesoporous silica is synthesized, using P123 surfactant via hydrothermal method, and functionalized with aminopropyl functional groups via grafting method. The synthesized mesostructured supports are used for intercalation of the hybrid POMs. The parent Keggin HPAs are also immobilized within the supports to perform closer and more efficient investigation. After characterization, effect of functional groups on immobilization pattern and quality is taken into consideration. The mesostructured organic–inorganic hybrid materials are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic absorption, and FT-IR analysis. The newly designed hybrid catalysts are investigated for heterogeneous epoxidation of olefins. Effects of temperature, oxidant, and catalyst amount are studied and the reaction conditions are optimized. An interpretation of the differences in the catalytic activity of the precursors is put forward and their catalytic activity is compared with their HPA counterparts. Furthermore, effects of functionalization on catalyst activity, stability, and reusability are taken into consideration. Results reveal that the designed mesostructured POM based hybrid catalysts can selectively and efficiently epoxidize olefins in presence of hydrogen peroxide as oxidant. The catalysts are shown to be heterogeneous and reusable without significant loss of activity in the proceeding rounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call