Abstract

The photosensitized oxygenation of organic molecules plays a key role in numerous processes of biological and industrial significance, such as, for example, photodynamic action and photodegradation of polymers. These reactions proceed either via quenching by the substrate of photophysically generated singlet oxygen, O2(1deltag), or via addition of ground state oxygen to photochemically generated radicals derived from the substrate, or via both pathways. The evaluation of the contributions of both mechanisms to the overall process requires reference sensitizers that exclusively induce one of the corresponding reactions. Some compounds are known to produce singlet oxygen with unit efficiency, but no references to sensitizers producing free radicals but no singlet oxygen have been found so far. In this work, we propose to use the decatungstate anion, W10O32(4-), as a first reference sensitizer for free radical oxygenations of organic molecules. A combination of time-resolved and steady-state studies has been performed to compare the photo-oxygenation of simple reference compounds, including 2-methyl-2-pentene and 2,3-dimethylbutene, by W10O32(4-) and by classical O2(1deltag) sensitizers, such as methylene blue and ruthenium complexes. It is demonstrated that W10O32(4-) sensitized oxygenation of organic compounds occurs exclusively by a free radical pathway, which differs clearly from both Type I and Type II oxygenations. Comparison with Type II reactions shows that: (i) in spite of their weaker reactivity, singlet oxygen mediated reactions are associated with larger photo-oxygenation yields than W10O32(4-) induced processes, due to the longer lifetime of the reactive species; and (ii) reaction of alkenes with both singlet oxygen and decatungstate features charge transfer interactions, whose magnitude is larger in the case of O2(1deltag).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call