Abstract

Structural stability and rapid charge-discharge capability of electrode materials are required for high performance lithium-ion batteries (LIBs). The materials derived from polyoxometalates (POMs) show special advantages in inhibiting capacity attenuation, and good dispersion or combination of POMs with metal-organic frameworks (MOFs) is an important method to obtain high activity anode composites for LIBs. In this study, a uniform MoO2/MoS2 heterostructure with surface supported carbon (C-MoO2/MoS2) was successfully fabricated from a [Cu2(BTC)4/3(H2O)2]6[H3PMo12O40] precursor, which showed not only the designed octahedral morphology but also fast charge transfer, long working life, and high rate performance. Superior reversible lithium storage capacity of 1047 mA h g-1 after 300 cycles was obtained at 1 A g-1. Even after 700 cycles at 5 A g-1, the discharge specific capacity of 646 mA h g-1 was maintained, and rate capability of 610 mA h g-1 could be achieved at 10 A g-1. The high capacitive contribution could be explained by the relatively large specific surface area of porous C-MoO2/MoS2, which was mainly caused by the supported carbon network and MoS2 nanosheets, resulting in fast lithiation/delithiation processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.