Abstract

Optimized and sensitive biomarker detection has recently been shown to have a critical impact on quality of diagnosis and medical care options. In this research study, polyoxometalate-γ-cyclodextrin metal-organic framework (POM-γCD MOF) was utilized as an electrocatalyst to fabricate highly selective sensors to detect in-situ released dopamine. The POM-γCD MOF produced multiple modes of signals for dopamine including electrochemical, colorimetric, and smartphone read-outs. Real-time quantitative monitoring of SH-SY5Y neuroblastoma cellular dopamine production was successfully demonstrated under various stimuli at different time intervals. The POM-CD MOF sensor and linear regression model were used to develop a smartphone read-out platform, which converts dopamine visual signals to digital signals within a few seconds. Ultimately, POM-γCD MOFs can play a significant role in the diagnosis and treatment of various diseases that involve dopamine as a significant biomarker.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call