Abstract

AbstractMemristor‐based reservoir computing systems represent an attractive approach in processing the time‐series information with a low training cost, in a range of fields from finance to engineering. Previous investigations have identified the charming potential of organic devices for next‐generation memory devices. However, the structural inhomogeneity and wide energy bandgap of most organic polymers usually lead to low‐yield and high operation power microelectronic devices, that permit their further application in neuromorphic computing. Herein, an organic‐inorganic hybrid memristor that can be conveniently processed into crossbar devices with tolerable yield via spin‐coating is shown. The doped inorganic polyoxometalate (POM) clusters via supramolecular assembly strategy not only act as the charge trapping modules but also assist the formation of conductive filaments due to their delocalized electrostatic adsorption property. With the dynamic short‐term memory property, the designed memristor devices can be used as a reservoir framework to process temporal information directly. A smaller reservoir with 100 memristors can be used for the recognition of emotion patterns efficiently. This strategy demonstrates the unique role of POM in developing low‐power and repeated memristors, which provides a new material platform to design advanced function memristors for neuromorphic computing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.