Abstract

The synthesis of functional poly(2-alkyl-2-oxazoline) (PAOx) copolymers with complex nanoarchitectures using a graft-through ring-opening metathesis polymerization (ROMP) approach is described. First, well-defined norbornene-terminated poly(2-ethyl-2-oxazoline) (PEtOx) macromonomers (MM) were prepared by cationic ringopening polymerization. ROMP of these MMs produced bottlebrush copolymers with PEtOx side chains. In addition, PEtOx-based branched MMs bearing a terminal alkyne group were prepared and conjugated to an azide-containing bis-spirocyclohexyl nitroxide via Cu-catalyzed azide-alkyne cycloaddition (CuAAC). ROMP of this branched MM, followed by in situ cross-linking, provided PEtOx-based brush-arm star polymers (BASPs) with nitroxide radicals localized at the core-shell interface. These PEtOx-based nitroxide-containing BASPs displayed relaxivity values on par with state-of-the-art polyethylene glycol (PEG)-based nitroxide materials, making them promising as organic radical contrast agents for metal-free magnetic resonance imaging (MRI).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.