Abstract

Trichodysplasia spinulosa (TS) is a proliferative skin disease observed in severely immunocompromized patients. It is characterized by papule and trichohyalin-rich spicule formation, epidermal acanthosis and distention of dysmorphic hair follicles overpopulated by inner root sheath cells (IRS). TS probably results from active infection with the TS-associated polyomavirus (TSPyV), as indicated by high viral-load, virus protein expression and particle formation. The underlying pathogenic mechanism imposed by TSPyV infection has not been solved yet. By analogy with other polyomaviruses, such as the Merkel cell polyomavirus associated with Merkel cell carcinoma, we hypothesized that TSPyV T-antigen promotes proliferation of infected IRS cells. Therefore, we analyzed TS biopsy sections for markers of cell proliferation (Ki-67) and cell cycle regulation (p16ink4a, p21waf, pRB, phosphorylated pRB), and the putatively transforming TSPyV early large tumor (LT) antigen. Intense Ki-67 staining was detected especially in the margins of TS hair follicles, which colocalized with TSPyV LT-antigen detection. In this area, staining was also noted for pRB and particularly phosphorylated pRB, as well as p16ink4a and p21waf. Healthy control hair follicles did not or hardly stained for these markers. Trichohyalin was particularly detected in the center of TS follicles that stained negative for Ki-67 and TSPyV LT-antigen. In summary, we provide evidence for clustering of TSPyV LT-antigen-expressing and proliferating cells in the follicle margins that overproduce negative cell cycle regulatory proteins. These data are compatible with a scenario of TSPyV T-antigen-mediated cell cycle progression, potentially creating a pool of proliferating cells that enable viral DNA replication and drive papule and spicule formation.

Highlights

  • Trichodysplasia spinulosa (TS) is a follicular skin disease observed only in severely immunocompromized patients [1,2]

  • Hematoxylin and Eosin (H&E) staining of healthy skin sections demonstrated normal, slim, hair follicles and epidermal stratification (Figure 1, A1–A3)

  • Trichohyalin and Ki-67 staining To detect the presence of inner root sheath (IRS) cells and to pinpoint areas of proliferation in the TS-affected tissue, the sections were stained for trichohyalin and Ki-67, respectively

Read more

Summary

Introduction

Trichodysplasia spinulosa (TS) is a follicular skin disease observed only in severely immunocompromized patients [1,2]. Thickening of the skin is seen, sometimes accompanied by alopecia of eyebrow hairs and eyelashes [3]. Compared to normal hair follicles, TS hair follicles seem devoid of normal hair shafts and papilla. Instead, they include large numbers of eosinophilic, trichohyalinpositive cells, probably inner root sheath (IRS) cells, and corneocytes that fill the infundibula of the follicles [4]. In the initial case report by Haycox and colleagues in 1999, excessive Ki67-staining was observed indicative of follicular cell proliferation [5]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call