Abstract

AbstractRechargeable sodium batteries are a promising technology for low‐cost energy storage. However, the undesirable drawbacks originating from the use of glass fiber membrane separators have long been overlooked. A versatile grafting–filtering strategy was developed to controllably tune commercial polyolefin separators for sodium batteries. The as‐developed Janus separators contain a single–ion‐conducting polymer‐grafted side and a functional low‐dimensional material coated side. When employed in room‐temperature sodium–sulfur batteries, the poly(1‐[3‐(methacryloyloxy)propylsulfonyl]‐1‐(trifluoromethanesulfonyl)imide sodium)‐grafted side effectively enhances the electrolyte wettability, and inhibits polysulfide diffusion and sodium dendrite growth. Moreover, a titanium‐deficient nitrogen‐containing MXene‐coated side electrocatalytically improved the polysulfide conversion kinetics. The as‐developed batteries demonstrate high capacity and extended cycling life with lean electrolyte loading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.