Abstract
AbstractComposites of single walled carbon nanotube dispersed within polymeric matrices have been investigated by spectroscopic techniques (Raman and Wide Angle X-Ray Spectroscopy). Raman investigations included an in depth analysis of the radial breathing mode (for single wall carbon nanotubes) and a brief analysis of the lines originating from the polymeric matrix. Raman spectra were successfully simulated by computer assuming that the as recorded spectrum is a convolution of lines whose line shape is well described by a modified Breit-Wigner-Fano equation. The dependence of the position of the lines belonging to the radial breathing mode on the concentration of single walled carbon nanotube has been investigated, with emphasis on information pertinent to the stress transfer from the macromolecular matrix to the filler and to the coating of single walled carbon nanotube by polymeric chains. Complementary Wide Angle X-Ray Spectroscopy measurements provided information about the effect of the loading with single walled carbon nanotube on the crystal structure of the polymeric matrix. The research aims to a better understanding of the interactions between polymeric matrices and nanofillers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.