Abstract

A novel electrically conductive nanocomposite consisting of poly(N-vinylpyrrolidone) (PVP) modified polyaniline (PANI) and cloisite clay nanoparticles was obtained via insitu polymerization method. The synthesized nanocomposite was characterized using FT-IR, XRD, conductivity measurement and cyclic voltammetry techniques. The electrical conductivity measurements of prepared nanocomposite showed that the nanocomposite is electrically conductive. Also cyclic voltammetry studies revealed that the synthesized nanocomposite is electro active. Electrochemical corrosion studies including open circuit potential measurements and tafel tests were carried out in various corrosive environments to evaluate the anticorrosive property of the nanocomposite coating on iron samples. Results showed that the coating of this nanocomposite on iron was useful in decreasing corrosion current and corrosion rate of iron in comparison with bare iron and pure polyaniline coated samples. A positive shift in corrosion potential and a significant decrease in corrosion current were observed for nanocomposite coated iron samples in sodium chloride 3.5 %, hydrochloric acid 0.1 M and sulfuric acid 0.1 M solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call