Abstract

In this study we report the novel polymeric resin poly(N-vinyl imidazole/ethylene glycol dimethacrylate) for the purification and isolation of phenolic acids. The monomer to crosslinker ratio and the porogen composition were optimized for isolating phenolic acids diluted in acetonitrile at normal phase chromatography conditions, first. Acetonitrile serves as polar, aprotic solvent, dissolving phenolic acids but not interrupting interactions with the stationary phase due to the approved Hansen solubility parameters. The optimized resin demonstrated high loading capacities and adsorption abilities particularly for phenolic acids in both, acetonitrile and aqueous solutions. The adsorption behavior of aqueous standards can be attributed to ion exchange effects due to electrostatic interactions between protonated imidazole residues and deprotonated phenolic acids. Furthermore, adsorption experiments and subsequent curve fittings provide information of maximum loading capacities of single standards according to the Langmuir adsorption model. Recovery studies of the optimized polymer in the normal-phase and ion-exchange mode illustrate the powerful isolation properties for phenolic acids and are comparable or even better than typical, commercially available solid phase extraction materials. In order to prove the applicability, a highly complex extract of rosemary leaves was purified by poly(N-vinyl imidazole/ethylene glycol dimethacrylate) and the isolated compounds were identified using UHPLC–qTOF-MS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call