Abstract

Low temperatures as well as encounters with host phagocytes are two stresses that have been relatively well studied in many species of bacteria. The exoribonuclease polynucleotide phosphorylase (PNPase) has previously been shown to be required by several species of bacteria, including Yersinia, for low-temperature growth. We have shown that PNPase also enhances the ability of Yersinia to withstand the killing activities of murine macrophages. We have gone on to show that PNPase is required for the optimal functioning of Yersinia's type three secretion system (T3SS), an organelle that injects effector proteins directly into host cells. Surprisingly, the PNPase-mediated effect on T3SS activity is independent of PNPase's ribonuclease activity and instead requires only its S1 RNA-binding domain. In stark contrast, the catalytic activity of PNPase is strictly required for enhanced growth at low temperature. Preliminary experiments suggest that the RNA-binding interface of the S1 domain is critical for its T3SS-enhancing activity. Our findings indicate that PNPase plays versatile roles in promoting Yersinia's survival in response to stressful conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call