Abstract

In the trace reconstruction problem, an unknown source string x ∈ {0,1}ⁿ is transmitted through a probabilistic deletion channel which independently deletes each bit with some fixed probability δ and concatenates the surviving bits, resulting in a trace of x. The problem is to reconstruct x given access to independent traces. Trace reconstruction of arbitrary (worst-case) strings is a challenging problem, with the current state of the art for poly(n)-time algorithms being the 2004 algorithm of Batu et al. [T. Batu et al., 2004]. This algorithm can reconstruct an arbitrary source string x ∈ {0,1}ⁿ in poly(n) time provided that the deletion rate δ satisfies δ ≤ n^{-(1/2 + e)} for some e > 0. In this work we improve on the result of [T. Batu et al., 2004] by giving a poly(n)-time algorithm for trace reconstruction for any deletion rate δ ≤ n^{-(1/3 + e)}. Our algorithm works by alternating an alignment-based procedure, which we show effectively reconstructs portions of the source string that are not repetitive, with a novel procedure that efficiently determines the length of highly repetitive subwords of the source string.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.