Abstract

For a set of rooted, unordered, distinctly leaf-labeled trees, the NP-hard maximum agreement subtree problem (MAST) asks for a tree contained (up to isomorphism or homeomorphism) in all of the input trees with as many labeled leaves as possible. We study the ordered variants of MAST where the trees are uniformly or non-uniformly ordered. We provide the first known polynomial-time algorithms for the uniformly and non-uniformly ordered homeomorphic variants as well as the uniformly and non-uniformly ordered isomorphic variants of MAST. Our algorithms run in time $O(kn^3)$, $O(n^3 \min \{kn,\, n+\log^{k-1}n\})$, $O(kn^3)$, and $O(n^3 \min \{kn,\, n+\log^{k-1}n\})$, respectively, where n is the number of leaf labels and k is the number of input trees.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.