Abstract
We present a Hilbert space geometric approach to the problem of characterizing the positive bivariate trigonometric polynomials that can be represented as the square of a two variable polynomial possessing a certain stability requirement, namely no zeros on a face of the bidisk. Two different characterizations are given using a Hilbert space structure naturally associated to the trigonometric polynomial; one is in terms of a certain orthogonal decomposition the Hilbert space must possess called the "split-shift orthogonality condition" and another is an operator theoretic or matrix condition closely related to an earlier characterization due to the first two authors. This approach allows several refinements of the characterization and it also allows us to prove a sums of squares decomposition which at once generalizes the Cole-Wermer sums of squares result for two variable stable polynomials as well as a sums of squares result related to the Schur-Cohn method for counting the roots of a univariate polynomial in the unit disk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.