Abstract

We study the analogue of polynomials (solutions to $\Delta^{n+1} u =0$ for some $n$) on the Sierpinski gasket ($SG$) with respect to a family of symmetric, self-similar Laplacians constructed by Fang, King, Lee, and Strichartz, extending the work of Needleman, Strichartz, Teplyaev, and Yung on the polynomials with respect to the standard Kigami Laplacian. We define a basis for the space of polynomials, the monomials, characterized by the property that a certain derivative is 1 at one of the boundary points, while all other derivatives vanish, and we compute the values of the monomials at the boundary points of $SG$. We then present some data which suggest surprising relationships between the values of the monomials at the boundary and certain Neumann eigenvalues of the family of symmetric self-similar Laplacians. Surprisingly, the results for the general case are quite different from the results for the Kigami Laplacian.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.