Abstract

In a 2010 paper Haglund, Morse, and Zabrocki studied the family of polynomials $\nabla C_{p1}\dots C_{pk}1$ , where $p=(p_1,\ldots,p_k)$ is a composition, $\nabla$ is the Bergeron-Garsia Macdonald operator and the $C_\alpha$ are certain slightly modified Hall-Littlewood vertex operators. They conjecture that these polynomials enumerate a composition indexed family of parking functions by area, dinv and an appropriate quasi-symmetric function. This refinement of the nearly decade old ``Shuffle Conjecture,'' when combined with properties of the Hall-Littlewood operators can be shown to imply the existence of certain bijections between these families of parking functions. In previous work to appear in her PhD thesis, the author has shown that the existence of these bijections follows from some relatively simple properties of a certain family of polynomials in one variable x with coefficients in $\mathbb{N}[q]$. In this paper we introduce those polynomials, explain their connection to the conjecture of Haglund, Morse, and Zabrocki, and explore some of their surprising properties, both proven and conjectured. Dans un article de 2010, Haglund, Morse et Zabrocki étudient la famille de polynômes $\nabla C_{p1}\dots C_{pk}1$ où $p=(p_1,\ldots,p_k)$ est une composition, $\nabla$ est l’opérateur de Bergeron-Garsia et les $C_\alpha$ sont des opérateurs ``vertex'' de Hall-Littlewood légèrement altérés. Il posent la conjecture que ces polynômes donnent l’énumération d'une famille de fonctions ``parking'', indexées par des compositions, par aire, le ``dinv'' et une fonction quasi-symétrique associée. Cette conjecture raffine la conjecture ``Shuffle'', qui est âgée de presque dix ans. On peut montrer, a partir de cette conjecture, que les propriétés des opérateurs de Hall-Littlewood, impliquent l'existence de certaines bijections entre ces familles de fonctions ``parking''. Dans un précédent travail , qui fait partie de sa thèse de doctorat, l'auteur montre que l’existence de ces bijections découle de certaines propriétés relativement simples d'une famille de polynômes à une variable x, avec coefficients dans $\mathbb{N}[q]$. Dans cet article, on introduit ces polynômes, on explique leur connexion avec la conjecture de Haglund, Morse et Zabrocki, et on explore certaines de leurs propriétés surprenantes, qu'elles soient prouvées ou seulement conjecturées.

Highlights

  • We begin with a simple family of polynomials on n variables, call them {PW (Xn; q)}, constructed recursively and indexed by a sequence W = (w1, . . . , wn)

  • Why should we care about these polynomials or Conjecture 1? The answer to this question lies in an intriguing conjecture about the parking functions in [Haglund et al(2011)]; to state it in full requires some background, which we give

  • With these definitions in hand, we can consider a number of conjectures about the parking functions and the special operator called nabla (∇), introduced in [Bergeron and Garsia(1999)]

Read more

Summary

Introduction

We begin with a simple family of polynomials on n variables, call them {PW (Xn; q)}, constructed recursively and indexed by a sequence W = We place several minor restrictions on this sequence, which we refer to hereafter as a schedule:. To recursively construct the remaining members of the family, we define an operator. We will refer hereafter to (7) as the “functional equation,” and if the conjecture holds for a given schedule W , we will say the schedule satisfies the functional equation. Why should we care about these polynomials or Conjecture 1? The answer to this question lies in an intriguing conjecture about the parking functions in [Haglund et al(2011)]; to state it in full requires some background, which we give Why should we care about these polynomials or Conjecture 1? The answer to this question lies in an intriguing conjecture about the parking functions in [Haglund et al(2011)]; to state it in full requires some background, which we give

Parking Functions
The C operators obey the following commutativity law
Our Polynomials and Parking Functions
Polynomial Properties
The Functional Equation
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call