Abstract
Given a point configuration A, we uncover a connection between polynomial-reproducing spline spaces over subsets of conv(A) and fine zonotopal tilings of the zonotope Z(V) associated to the corresponding vector configuration. This link directly generalizes a known result on Delaunay configurations and naturally encompasses, due to its combinatorial character, the case of repeated and affinely dependent points in A. We prove the existence of a general iterative construction process for such spaces. Finally, we turn our attention to regular fine zonotopal tilings, specializing our previous results and exploiting the dual graph of the tiling to propose a set of practical algorithms for the construction and evaluation of the associated spline functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.