Abstract

Kojima, Shindoh and Hara proposed a family of search directions for the semidefinite linear complementarity problem (SDLCP) and established polynomial convergence of a feasible short-step path-following algorithm based on a particular direction of their family. The question of whether polynomiality could be established for any direction of their family thus remained an open problem. This paper answers this question in the affirmative by establishing the polynomiality of primal-dual interior-point algorithms for SDLCP based on any direction of the Kojima, Shindoh and Hara family of search directions. We show that the polynomial iteration-complexity bounds of two well-known algorithms for linear programming, namely the short-step path-following algorithm of Kojima et al. and Monteiro and Adler, and the predictor-corrector algorithm of Mizuno et al., carry over to the context of SDLCP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.