Abstract

This paper considers the verification of decentralized fault pattern diagnosability for discrete event systems, where the pattern is modeled as a finite automaton whose accepted language is the objective to be diagnosed. We introduce a notion of codiagnosability to formalize the decentralized fault pattern diagnosability, which requires the pattern to be detected by one of the external local observers within a bounded delay. To this end, a structure, namely a verifier, is proposed to verify the codiagnosability of the system and the fault pattern. By studying an indeterminate cycle of the verifier, sufficient and necessary conditions are provided to test the codiagnosability. It is shown that the proposed method requires polynomial time at most. In addition, we present an approach to extend the proposed verifier structure so that it can be applied to centralized cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.