Abstract
In scheduling problems with two competing agents, each one of the agents has his own set of jobs and his own objective function, but both share the same processor. The goal is to minimize the value of the objective function of one agent, subject to an upper bound on the value of the objective function of the second agent. In this paper we study two-agent scheduling problems on a proportionate flowshop. Three objective functions of the first agent are considered: minimum maximum cost of all the jobs, minimum total completion time, and minimum number of tardy jobs. For the second agent, an upper bound on the maximum allowable cost is assumed. We introduce efficient polynomial time solution algorithms for all cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.