Abstract

Consider a polynomial f with an arbitrary but fixed number of variables and with integral coefficients. We present an algorithm which reduces the problem of finding the irreducible factors of f in polynomial-time in the total degree of f and the coefficient lengths of f to factoring a univariate integral polynomial. Together with A. Lenstra’s,.H. Lenstra’s and L. Lovász’ polynomial-time factorization algorithm for univariate integral polynomials [Math. Ann., 261 (1982), pp. 515–534] this algorithm implies the following theorem. Factoring an integral polynomial with a fixed number of variables into irreducibles, except for the constant factors, can be accomplished in deterministic polynomial-time in the total degree and the size of its coefficients. Our algorithm can be generalized to factoring multivariate polynomials with coefficients in algebraic number fields and finite fields in polynomial-time. We also present a different algorithm, based on an effective version of a Hilbert Irreducibility Theorem, which polynomial-time reduces testing multivariate polynomials for irreducibility to testing bivariate integral polynomials for irreduciblity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.