Abstract

We propose a concrete family of dense lattices of arbitrary dimension n in which the lattice bounded distance decoding (BDD) problem can be solved in deterministic polynomial time. This construction is directly adapted from the Chor–Rivest cryptosystem (IEEE-TIT 1988). The lattice construction needs discrete logarithm computations that can be made in deterministic polynomial time for well-chosen parameters. Each lattice comes with a deterministic polynomial time decoding algorithm able to decode up to large radius. Namely, we reach decoding radius within $$O(\log n)$$ Minkowski’s bound, for both $$\ell _1$$ and $$\ell _2$$ norms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.