Abstract
A disk graph is the intersection graph of a set of disks with arbitrary diameters in the plane. For the case that the disk representation is given, we present polynomial-time approximation schemes (PTASs) for the maximum weight independent set problem (selecting disjoint disks of maximum total weight) and for the minimum weight vertex cover problem in disk graphs. These are the first known PTASs for $\mathcal{NP}$-hard optimization problems on disk graphs. They are based on a novel recursive subdivision of the plane that allows applying a shifting strategy on different levels simultaneously, so that a dynamic programming approach becomes feasible. The PTASs for disk graphs represent a common generalization of previous results for planar graphs and unit disk graphs. They can be extended to intersection graphs of other "disk-like" geometric objects (such as squares or regular polygons), also in higher dimensions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.