Abstract

We present a polynomial time approximation scheme for Euclidean TSP in /spl Rfr//sup 2/. Given any n nodes in the plane and /spl epsiv/>0, the scheme finds a (1+/spl epsiv/)-approximation to the optimum traveling salesman tour in time n/sup 0(1//spl epsiv/)/. When the nodes are in /spl Rfr//sup d/, the running time increases to n(O/spl tilde/(log/sup d-2/n)//spl epsiv//sup d-1/) The previous best approximation algorithm for the problem (due to Christofides (1976)) achieves a 3/2-approximation in polynomial time. We also give similar approximation schemes for a host of other Euclidean problems, including Steiner Tree, k-TSP, Minimum degree-k, spanning tree, k-MST, etc. (This list may get longer; our techniques are fairly general.) The previous best approximation algorithms for all these problems achieved a constant-factor approximation. All our algorithms also work, with almost no modification, when distance is measured using any geometric norm (such as l/sub p/ for p/spl ges/1 or other Minkowski norms).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.