Abstract
In multi-object estimation, the traditional minimum mean squared error (MMSE) objective is unsuitable: a simple permutation of object identities can turn a very good estimate into what is apparently a very bad one. Fortunately, a criterion tailored to sets-minimization of the mean optimal sub-pattern assignment (MMOSPA)-has recently evolved. Aside from special cases, exact MMOSPA estimates have seemed difficult to compute. But in this work we present the first exact polynomial-time algorithms for calculating the MMOSPA estimate for probability densities that are represented by particles. The key insight is that the MMOSPA estimate can be found by means of enumerating the cells of a hyperplane arrangement, which is a traditional problem from computational geometry. Although the runtime complexity is still high for the general case, efficient algorithms are obtained for two special cases, i.e., (i) two targets with arbitrary state dimensions and (ii) an arbitrary number of one-dimensional targets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.