Abstract
Polynomials have proven to be useful tools to tailor generic kernels to specific applications. Nevertheless, we had only restricted knowledge for selecting fertile polynomials which consistently produce positive semidefinite kernels. For example, the well-known polynomial kernel can only take advantage of a very narrow range of polynomials, that is, the univariate polynomials with positive coefficients. This restriction not only hinders intensive exploitation of the flexibility of the kernel method, but also causes misuse of indefinite kernels. Our main theorem significantly relaxes the restriction by asserting that a polynomial consistently produces positive semidefinite kernels, if it has a positive semidefinite coefficient matrix. This sufficient condition is quite natural, and hence, it can be a good characterization of the fertile polynomials. In fact, we prove that the converse of the assertion of the theorem also holds true in the case of degree 1. We also prove the effectiveness of our main theorem by showing three corollaries relating to certain applications known in the literature: the first and second corollaries, respectively, give generalizations of the polynomial kernel and the principal-angle (determinant) kernel. The third corollary shows extended and corrected sufficient conditions for the codon-improved kernel and the weighted-degree kernel with shifts to be positive semidefinite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.