Abstract

The first part of this paper reviews the application of the sum-of-squares-of-polynomials technique to the problem of global stability of fluid flows. It describes the known approaches and the latest results, in particular, obtaining for a version of the rotating Couette flow a better stability range than the range given by the classic energy stability method. The second part of this paper describes new results and ideas, including a new method of obtaining bounds for time-averaged flow parameters illustrated with a model problem and a method of obtaining approximate bounds that are insensitive to unstable steady states and periodic orbits. It is proposed to use the bound on the energy dissipation rate as the cost functional in the design of flow control aimed at reducing turbulent drag.

Highlights

  • It is used to refer to a recent discovery that the SOS decomposition for a polynomial can be computed via semidefinite programming (SDP) [1, 2]

  • When the system remains globally stable for Reynolds numbers beyond the energy stability limit, there exists a polynomial in (a, q2) that serves as a Lyapunov function at least for Re just beyond Ree

  • The first part of this paper gives a review of the application of SOS to the problem of global stability of fluid flows

Read more

Summary

Papachristodoulou3

The first part of this paper reviews the application of the sum-of-squares-of-polynomials technique to the problem of global stability of fluid flows. It describes the known approaches and the latest results, in particular, obtaining for a version of the rotating Couette flow a better stability range than the range given by the classic energy stability method. The second part of this paper describes new results and ideas, including a new method of obtaining bounds for time-averaged flow parameters illustrated with a model problem and a method of obtaining approximate bounds that are insensitive to unstable steady states and periodic orbits. It is proposed to use the bound on the energy dissipation rate as the cost functional in the design of flow control aimed at reducing turbulent drag

Introduction
Applying sum of squares for stability analysis of fluid flows
A look ahead
Re λijaj
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.