Abstract

This paper deals with the rate of convergence in $1$-Wasserstein distance of the marginal law of a Brownian motion with drift conditioned not to have reached $0$ towards the Yaglom limit of the process. In particular it is shown that, for a wide class of initial measures including probability measures with compact support, the Wasserstein distance decays asymptotically as $1/t$. Likewise, this speed of convergence is recovered for the convergence of marginal laws conditioned not to be absorbed up to a horizon time towards the Bessel-$3$ process, when the horizon time tends to infinity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.